Overview  Animation  Classic Surfaces  Parm Surfaces  Curves on Surfaces  Discrete Geodesics  ODE  Platonic Solids  Cycloid  Root Finder  Harmonic Maps  Rivara Bisection  Scalar Field  Weierstrass  Closed Polygon  Elastic Curve  Billiard in an Ellipse  LIC Visualization  Discrete VF  Hodge Splitting  Textured Surface  Surfaces of Rotation  Mean Curvature Flow  Pythagoraen Tree  Julia Sets 

Surfaces of Rotation

Surfaces of rotation are generated from a planar curve by rotating the curve around an axis.

The shape of the surface of rotation depends on the given meridian curve, the position of the axis. Let c(s)= (c1(s),c2(s),c3(s)) be a curve in the xz-plane, then the expression of a surface of rotation with respect to the z-axis is given by

Rotation[c,z-axis](s, t) = (cos(t)*c1(s), sin(t)*c2(s), c3(s)).

© 1996-2015 Last modified: 07.12.2015 --- www.javaview.de --- The JavaView Project